Our paper presents a novel approach to pattern classification. The general disadvantage of a traditional classifier is in too different behaviour and optimal parameter settings during training on a given pattern set and the following cross-validation. We describe the term critical sensitivity, which means the lowest reached sensitivity for an individual class. This approach ensures a uniform classification quality for individual class classification. Therefore, it prevents outlier classes with terrible results. We focus on the evaluation of critical sensitivity, as a quality criterion. Our proposed classifier eliminates this disadvantage in many cases. Our aim is to present that easily formed hidden classes can significantly contribute to improving the quality of a classifier. Therefore, we decided to propose classifier will have a relatively simple structure. The proposed classifier structure consists of three layers. The first is linear, used for dimensionality reduction. The second layer serves for clustering and forms hidden classes. The third one is the output layer for optimal cluster unioning. For verification of the proposed system results, we use standard datasets. Cross-validation performed on standard datasets showed that our critical sensitivity-based classifier provides comparable sensitivity to reference classifiers.