2022
DOI: 10.1214/22-aos2170
|View full text |Cite
|
Sign up to set email alerts
|

A precise high-dimensional asymptotic theory for boosting and minimum-ℓ1-norm interpolated classifiers

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2024
2024

Publication Types

Select...
5

Relationship

0
5

Authors

Journals

citations
Cited by 14 publications
(1 citation statement)
references
References 61 publications
0
1
0
Order By: Relevance
“…These classifiers are usually used for classification in two or more classes and are based on various principles. For example, linear combination (Orozco-Alzate et al 2019), use of mutual distances (Shahid and Singh 2019;Liu and Wang 2022;Veneri et al 2022), variants of gradient boosting (Bentejac et al 2021;Liang and Sur 2022), adaboost (Hu et al 2020), and bagging (Medina-Pérez et al 2017;Jafarzadeh et al 2021).…”
Section: Introductionmentioning
confidence: 99%
“…These classifiers are usually used for classification in two or more classes and are based on various principles. For example, linear combination (Orozco-Alzate et al 2019), use of mutual distances (Shahid and Singh 2019;Liu and Wang 2022;Veneri et al 2022), variants of gradient boosting (Bentejac et al 2021;Liang and Sur 2022), adaboost (Hu et al 2020), and bagging (Medina-Pérez et al 2017;Jafarzadeh et al 2021).…”
Section: Introductionmentioning
confidence: 99%