Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Because sensory signals often evolve rapidly, they could be instrumental in the emergence of reproductive isolation between species. However, pinpointing their specific contribution to isolating barriers, and the mechanisms underlying their divergence, remains challenging. Here, we demonstrate sexual isolation due to divergence in chemical signals between two populations of Drosophila americana (SC and NE) and one population of D. novamexicana, and dissect its underlying phenotypic and genetic mechanisms. Mating trials revealed strong sexual isolation between Drosophila novamexicana males and SC Drosophila americana females, as well as more moderate bi‐directional isolation between D. americana populations. Mating behavior data indicate SC D. americana males have the highest courtship efficiency and, unlike males of the other populations, are accepted by females of all species. Quantification of cuticular hydrocarbon (CHC) profiles—chemosensory signals that are used for species recognition and mate finding in Drosophila—shows that the SC D. americana population differs from the other populations primarily on the basis of compound carbon chain‐length. Moreover, manipulation of male CHC composition via heterospecific perfuming—specifically perfuming D. novamexicana males with SC D. americana males—abolishes their sexual isolation from these D. americana females. Of a set of candidates, a single gene—elongase CG17821—had patterns of gene expression consistent with a role in CHC differences between species. Sequence comparisons indicate D. novamexicana and our Nebraska (NE) D. americana population share a derived CG17821 truncation mutation that could also contribute to their shared “short” CHC phenotype. Together, these data suggest an evolutionary model for the origin and spread of this allele and its consequences for CHC divergence and sexual isolation in this group.
Because sensory signals often evolve rapidly, they could be instrumental in the emergence of reproductive isolation between species. However, pinpointing their specific contribution to isolating barriers, and the mechanisms underlying their divergence, remains challenging. Here, we demonstrate sexual isolation due to divergence in chemical signals between two populations of Drosophila americana (SC and NE) and one population of D. novamexicana, and dissect its underlying phenotypic and genetic mechanisms. Mating trials revealed strong sexual isolation between Drosophila novamexicana males and SC Drosophila americana females, as well as more moderate bi‐directional isolation between D. americana populations. Mating behavior data indicate SC D. americana males have the highest courtship efficiency and, unlike males of the other populations, are accepted by females of all species. Quantification of cuticular hydrocarbon (CHC) profiles—chemosensory signals that are used for species recognition and mate finding in Drosophila—shows that the SC D. americana population differs from the other populations primarily on the basis of compound carbon chain‐length. Moreover, manipulation of male CHC composition via heterospecific perfuming—specifically perfuming D. novamexicana males with SC D. americana males—abolishes their sexual isolation from these D. americana females. Of a set of candidates, a single gene—elongase CG17821—had patterns of gene expression consistent with a role in CHC differences between species. Sequence comparisons indicate D. novamexicana and our Nebraska (NE) D. americana population share a derived CG17821 truncation mutation that could also contribute to their shared “short” CHC phenotype. Together, these data suggest an evolutionary model for the origin and spread of this allele and its consequences for CHC divergence and sexual isolation in this group.
Because sensory signals often evolve rapidly, they could be instrumental in the emergence of reproductive isolation between species. However, pinpointing their specific contribution to isolating barriers, and the mechanisms underlying their divergence, remains challenging. Here we demonstrate sexual isolation due to divergence in chemical signals between members of the Drosophila americana group, dissect its underlying phenotypic and genetic mechanisms, and propose a model of its evolutionary history. Mating trials revealed complete sexual isolation between Drosophila novamexicana males and Drosophila americana texana females, as well as more moderate bi-directional isolation between D. americana subspecies. Mating behavior recordings indicate D. a. texana males have the highest courtship efficiency and, unlike males of the other two species, are accepted by females of all species. Quantification of cuticular hydrocarbon (CHC) profiles, chemosensory signals that are used for species recognition and mate finding in Drosophila, shows that D. a. texana differs from the other two species primarily on the basis of compound carbon chain-length. Moreover, manipulation of male CHC composition via heterospecific perfuming—specifically perfuming D. novamexicana males with D. a. texana males—abolishes their sexual isolation from D. a. texana females. Evaluation of candidate genes for patterns of gene expression reveals a single gene—elongase CG17821—with patterns consistent with a causal role in CHC differences between species. Sequence comparisons indicate D. novamexicana and D. a. americana share a derived CG17821 truncation mutation that could also contribute to their shared “short” CHC phenotype. We present an evolutionary model for the origin and spread of this allele and the consequences for CHC divergence and sexual isolation in this group.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.