Recent advancements have shown tensions between observations and our current understanding of the Universe. Such observations may include the H0 tension and massive galaxies at high redshift that are older than traditional galaxy formation models have predict. Since these observations are based on redshift as the primary distance indicator, a bias in the redshift may explain these tensions. While redshift follows an established model, when applied to astronomy it is based on the assumption that the rotational velocity of the Milky Way galaxy relative to the observed galaxies has a negligible effect on redshift. But given the mysterious nature of the physics of galaxy rotation, that assumption needed to be tested. The test was done by comparing the redshift of galaxies rotating in the same direction relative to the Milky Way to the redshift of galaxies rotating in the opposite direction relative to the Milky Way. The results show that the mean redshift of galaxies that rotate in the same direction relative to the Milky Way is higher than the mean redshift of galaxies that rotate in the opposite direction. Additionally, the redshift difference becomes larger as the redshift gets higher. The consistency of the analysis was verified by comparing data collected by three different telescopes, annotated using four different methods, released by three different research teams, and covering both the northern and southern ends of the galactic pole. All the datasets are in excellent agreement with each other, showing consistency in the observed redshift bias. Given the “reproducibility crisis” in science, all the datasets used in this study are publicly available, and the results can be easily reproduced. This observation could be the first direct empirical reproducible observation for the Zwicky’s “tired-light” model.