The protein structure field is experiencing a revolution. From the increased throughput of techniques to determine experimental structures, to developments such as cryo-EM that allow us to find the structures of large protein complexes or, more recently, the development of artificial intelligence tools, such as AlphaFold, that can predict with high accuracy the folding of proteins for which the availability of homology templates is limited. Here we quantify the effect of the recently released AlphaFold database of protein structural models in our knowledge on human proteins. Our results indicate that our current baseline for structural coverage of 47%, considering experimentally-derived or template-based homology models, elevates up to 75% when including AlphaFold predictions, reducing the fraction of dark proteome from 22% to just 7% and the number of proteins without structural information from 4.832 to just 29. Furthermore, although the coverage of disease-associated genes and mutations was near complete before AlphaFold release (70% of ClinVar pathogenic mutations and 74% of oncogenic mutations), AlphaFold models still provide an additional coverage of 2% to 14% of these critically important sets of biomedical genes and mutations. We also provide several examples of disease-associated proteins where AlphaFold provides critical new insights. Overall, our results show that the sequence-structure gap of human proteins has almost disappeared, an outstanding success of direct consequences for the knowledge on the human genome and the derived medical applications.