“…Over the past decade, another nonparametric technique, artificial neural networks (ANNs) have been applied in traffic forecasting because of their strong ability to capture the indeterministic and complex nonlinearity of time series (Smith & Demetsky, 1994Chang & Su, 1995;Dougherty & Cobbet, 1997;Lam & Xu, 2000;Park et al, 1999;Dharia & Adeli, 2003;Wei et al, 2009;Wei & Lee 2007;Lee, 2009). Motivated by the universal approximation property, neural network models ranging from purely static to highly dynamic structures include the multilayer perceptrons (MLPs) (Clark et al, 1993;Vythoulkas, 1993;Lee & Fambro, 1999;Gilmore & Abe, 1995;Ledoux, 1997;Innamaa, 2000;Florio & Mussone, 1996;Yun et al, 1998;Zhang, 2000;Chen et al, 2001), the radial basis function (RBF) ANNs (Lyons et al, 1996;Park & Rilett, 1998;Chen et al, 2001), the time-delayed ANNs (Lingras et al, 2000;Lingras & Mountford, 2001;Yun et al, 1998;Yasdi 1999;Abdulhai et al, 1999;Dia, 2001;Ishak & Alecsandru, 2003), the recurrent ANNs (Dia, 2001;Van Lint et al, 2002, and the hybrid ANNs (Abdulhai et al, 1999;Chen et al, 2001;Lingras & Mountford, 2001;Park, 2002;Yin et al, 2002;Vlahogianni ...…”