Recently, demand for thin steel plates has increased. In the manufacturing of thin steel plates, surface quality deterioration due to contact between the rollers and steel plate involved is problematic. We are investigating magnetic levitation conveyance to propose a noncontact conveyance system using electromagnets. However, the magnetic levitation of thin steel plates is unstable because of the deflection in the range where the electromagnetic force is not affected. Therefore, to improve the levitation stability, we are investigating a bending magnetic levitation system in which a thin steel plate is bent during magnetic levitation but not deformed plastically. In this study, a dynamic analysis using the finite difference method is performed to understand the behavior of a thin steel plate during magnetic levitation. In the dynamic analysis, vibration is evaluated based on the displacement standard deviation. The dynamic simulation visualizes the dynamic behavior of a levitated flexible steel plate.