2022
DOI: 10.2140/gt.2022.26.221
|View full text |Cite
|
Sign up to set email alerts
|

Abelian quotients of the Y –filtration on the homology cylinders via the LMO functor

Help me understand this report
View preprint versions

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
2

Citation Types

0
53
0

Year Published

2022
2022
2024
2024

Publication Types

Select...
5

Relationship

1
4

Authors

Journals

citations
Cited by 5 publications
(53 citation statements)
references
References 27 publications
0
53
0
Order By: Relevance
“…Remark By Corollary 3.17, we have O(a1,a2,a1)+O(a2,a1,a2)prefixKerfrakturs$O(a_1,a_2,a_1)+O(a_2,a_1,a_2) \in \operatorname{Ker}\mathfrak {s}$, which is proved in [15, Lemma 6.6(1)] in a different way. Now it is natural to ask whether O(a1,,am1,am,am1,,a1)badbreak+O(am,,a2,a1,a2,,am)prefixKerfrakturs\begin{equation*} O(a_1, \dots , a_{m-1}, a_m, a_{m-1}, \dots , a_1) + O(a_m, \dots , a_2, a_1, a_2, \dots , a_m) \in \operatorname{Ker}\mathfrak {s} \end{equation*}for m3$m\geqslant 3$.…”
Section: Refined Surgery Map and Refined Relationsmentioning
confidence: 94%
See 4 more Smart Citations
“…Remark By Corollary 3.17, we have O(a1,a2,a1)+O(a2,a1,a2)prefixKerfrakturs$O(a_1,a_2,a_1)+O(a_2,a_1,a_2) \in \operatorname{Ker}\mathfrak {s}$, which is proved in [15, Lemma 6.6(1)] in a different way. Now it is natural to ask whether O(a1,,am1,am,am1,,a1)badbreak+O(am,,a2,a1,a2,,am)prefixKerfrakturs\begin{equation*} O(a_1, \dots , a_{m-1}, a_m, a_{m-1}, \dots , a_1) + O(a_m, \dots , a_2, a_1, a_2, \dots , a_m) \in \operatorname{Ker}\mathfrak {s} \end{equation*}for m3$m\geqslant 3$.…”
Section: Refined Surgery Map and Refined Relationsmentioning
confidence: 94%
“…Proof of Theorem Consider the exact sequence of abelian groups 0Y4scriptIscriptC/Y5Y3scriptIscriptC/Y5Y3scriptIscriptC/Y40.\begin{equation*} 0 \rightarrow Y_4\mathcal {I}\mathcal {C}/Y_5 \rightarrow Y_3\mathcal {I}\mathcal {C}/Y_5 \rightarrow Y_3\mathcal {I}\mathcal {C}/Y_4 \rightarrow 0. \end{equation*}By [15, Theorem 1.7], we have prefixtor(Y3IC/Y4)(L3S2false(Hfalse))double-struckZ/2double-struckZ$\operatorname{tor}(Y_3\mathcal {I}\mathcal {C}/Y_4) \cong (L_3 \oplus S^2(H))\otimes \mathbb {Z}/2\mathbb {Z}$, where Ln$L_n$ denotes the degree n$n$ part of the free Lie algebra on H$H$. Thus, the image of the set Xbadbreak={Tfalse(a,b,c,b,afalse),Tfalse(b,c,a,c,bfalse),Tfalse(a,b,b,b,afalse)abc}{Ofalse(a,b,afalse)ab}\begin{equation*} X= \lbrace T(a,b,c,b,a), T(b,c,a,c,b), T(a,b,b,b,a) \mid a \prec b \prec c\rbrace \cup \lbrace O(a^{\prime },b^{\prime },a^{\prime }) \mid a^{\prime }\preceq b^{\prime }\rbrace \end{equation*}under the map s$\mathfrak {s}$ is a basis of …”
Section: Refined Surgery Map and Refined Relationsmentioning
confidence: 99%
See 3 more Smart Citations