In response to herbivore (Spodoptera littoralis) attack, lima bean (Phaseolus lunatus) leaves produced hydrogen peroxide (H 2 O 2 ) in concentrations that were higher when compared to mechanically damaged (MD) leaves. Cellular and subcellular localization analyses revealed that H 2 O 2 was mainly localized in MD and herbivore-wounded (HW) zones and spread throughout the veins and tissues. Preferentially, H 2 O 2 was found in cell walls of spongy and mesophyll cells facing intercellular spaces, even though confocal laser scanning microscopy analyses also revealed the presence of H 2 O 2 in mitochondria/peroxisomes. Increased gene and enzyme activations of superoxide dismutase after HW were in agreement with confocal laser scanning microscopy data. After MD, additional application of H 2 O 2 prompted a transient transmembrane potential (V m ) depolarization, with a V m depolarization rate that was higher when compared to HW leaves. In transgenic soybean (Glycine max) suspension cells expressing the Ca 21 -sensing aequorin system, increasing amounts of added H 2 O 2 correlated with a higher cytosolic calcium ([Ca 21 ] cyt ) concentration. In MD and HW leaves, H 2 O 2 also triggered the increase of [Ca 21 ] cyt , but MD-elicited [Ca 21 ] cyt increase was more pronounced when compared to HW leaves after addition of exogenous H 2 O 2 . The results clearly indicate that V m depolarization caused by HW makes the membrane potential more positive and reduces the ability of lima bean leaves to react to signaling molecules.