In this paper, we explore the possibility that the radiative properties of
the most compact region in NGC 6251* may be understood in the same sense as Sgr
A*, though with some telling differences that may hint at the nature of jet
formation. We show that observations of this object with ASCA, ROSAT, HST and
VLBI together may be hinting at a picture in which Bondi-Hoyle accretion from
an ambient ionized medium feeds a standard disk accreting at ~ 4.0*10^{22} g
s^{-1}. Somewhere near the event horizon, this plasma is heated to >10^{11} K,
where it radiates via thermal synchrotron (producing a radio component) and
self-Comptonization (accounting for a nonthermal X-ray flux). This temperature
is much greater than its virial value and the hot cloud expands at roughly the
sound speed (~0.1c), after which it begins to accelerate on a parsec scale to
relativistic velocities. In earlier work, the emission from the extended jet
has been modeled successfully using nonthermal synchrotron self-Compton
processes, with a self-absorbed inner core. In the picture we are developing
here, the initial ejection of matter is associated with a self-absorbed thermal
radio component that dominates the core emission on the smallest scales. The
nonthermal particle distributions responsible for the emission in the extended
jet are then presumably energized, e.g., via shock acceleration, within the
expanding, hot gas. The power associated with this plasma represents an
accretion efficiency of about 0.54, requiring dissipation in a prograde disk
around a rapidly spinning black hole (with spin parameter a~1).Comment: 17 pages, 1 figures, to appear in Ap