Mutations in isocitrate dehydrogenase 1 (IDH1) impart a neomorphic reaction that produces the oncometabolite D-2-hydroxyglutarate (D2HG), which can inhibit DNA and histone demethylases to drive tumorigenesis via epigenetic changes. Though heterozygous point mutations in patients primarily affect residue R132, there are myriad D2HG-producing mutants that display unique catalytic efficiency of D2HG production. Here, we show that catalytic efficiency of D2HG production is greater in IDH1 R132Q than R132H mutants, and expression of IDH1 R132Q in cellular and mouse xenograft models leads to higher D2HG concentrations in cells, tumors, and sera compared to R132H-expressing models. Reduced representation bisulfite sequencing (RRBS) analysis of xenograft tumors shows expression of IDH1 R132Q relative to R132H leads to hypermethylation patterns in pathways associated with DNA damage. Transcriptome analysis indicates that the IDH1 R132Q mutation has a more aggressive pro-tumor phenotype, with members of EGFR, Wnt, and PI3K signaling pathways differentially expressed, perhaps through non-epigenetic routes. Together, these data suggest that the catalytic efficiency of IDH1 mutants modulate D2HG levels in cellular and in vivo models, resulting in unique epigenetic and transcriptomic consequences where higher D2HG levels appear to be associated with more aggressive tumors.