Directed model checking is a well-established approach for detecting error states in concurrent systems. A popular variant to find shortest error traces is to apply the A * search algorithm with distance heuristics that never overestimate the real error distance. An important class of such distance heuristics is the class of pattern database heuristics. Pattern database heuristics are built on abstractions of the system under consideration. In this paper, we propose downward pattern refinement, a systematic approach for the construction of pattern database heuristics for concurrent systems of timed automata. First, we propose a general framework for pattern databases in the context of timed automata and show that desirable theoretical properties hold for the resulting pattern database. Afterward, we formally define a concept to measure the accuracy of abstractions. Based on this concept, we propose an algorithm for computing succinct abstractions that are still accurate to produce informed pattern databases. We evaluate our approach on large and complex industrial problems. The experiments show the practical potential of the resulting pattern database heuristic.