We establish a pointwise stability estimate for the Thomas-Fermi-von Weizsäcker (TFW) model, which demonstrates that a local perturbation of a nuclear arrangement results also in a local response in the electron density and electrostatic potential. The proof adapts the arguments for existence and uniqueness of solutions to the TFW equations in the thermodynamic limit by Catto et al. (The mathematical theory of thermodynamic limits: Thomas-Fermi type models. Oxford mathematical monographs. The Clarendon Press, Oxford University Press, New York, 1998). To demonstrate the utility of this combined locality and stability result we derive several consequences, including an exponential convergence rate for the thermodynamic limit, partition of total energy into exponentially localised site energies (and consequently, exponential locality of forces), and generalised and strengthened results on the charge neutrality of local defects.