3-Nitrobenzanthrone (3-NBA), a potent
mutagen and suspected human
carcinogen, is a common environmental pollutant. The genotoxicity
of 3-NBA has been associated with its ability to form DNA adducts,
including N-(2′-deoxyguanosin-8-yl)-3-aminobenzanthrone
(C8-dG-ABA). To investigate the molecular mechanism of C8-dG-ABA mutagenesis
in human cells, we have replicated a plasmid containing a single C8-dG-ABA
in human embryonic kidney 293T (HEK293T) cells, which yielded 14%
mutant progeny. The major types of mutations induced by C8-dG-ABA
were G → T > G → A > G → C. siRNA knockdown
of
the translesion synthesis (TLS) DNA polymerases (pols) in HEK293T
cells indicated that pol η, pol κ, pol ι, pol ζ,
and Rev1 each have a role in replication across this adduct. The extent
of TLS was reduced with each pol knockdown, but the largest decrease
(of ∼55% reduction) in the level of TLS occurred in cells with
knockdown of pol ζ. Pol η and pol κ were considered
the major contributors of the mutagenic TLS, because the mutation
frequency (MF) decreased by 70%, when these pols were simultaneously
knocked down. Rev1 also is important for mutagenesis, as reflected
by the 60% reduction in MF upon Rev1 knockdown, but it probably plays
a noncatalytic role by physically interacting with the other two Y-family
pols. In contrast, pol ζ appeared to be involved in the error-free
bypass of the lesion, because MF increased by 60% in pol ζ knockdown
cells. These results provide important mechanistic insight into the
bypass of the C8-dG-ABA adduct.