Abstract:We have studied the pH and the temperature effects on copper ions' adsorption on natural and treated clays from Algeria. The clay was also treated to improve the adsorption capacity. X-ray diffraction identified montmorillonite and kaolinite as major clay minerals. The Langmuir adsorption model was used for the mathematical description of the adsorption equilibrium and the equilibrium data adhered very well to this model. The treated and natural clay had a monolayer adsorption capacity equal to 15.40 and 12.22… Show more
“…However, treated Algeria clay under similar condition as the untreated clay has adsorption capacity of 15.40 mg/g [105]. The process of adsorption was spontaneous and exothermic [105]. Sorption of copper (II) ion on palygorskite and sepiolite is enhanced at elevated temperature [106].…”
Section: Mixture Of Oxide Clay And/or Other Materialsmentioning
confidence: 97%
“…Another study found that low-cost adsorbent Algeria clay that is composed of predominantly montmorillonite and kaolinite has the capacity of adsorbing Cu(II) at pH of 6.5 and 20°C with maximum adsorption capacity of 12.22 mg/g [105]. However, treated Algeria clay under similar condition as the untreated clay has adsorption capacity of 15.40 mg/g [105]. The process of adsorption was spontaneous and exothermic [105].…”
Section: Mixture Of Oxide Clay And/or Other Materialsmentioning
confidence: 99%
“…However, in a five metal ion system (Quinary), the adsorption of lead, cadmium and nickel are affected negatively by the presence of zinc and copper whereas the presence of lead, cadmium and nickel has synergistic effect on the sorption of zinc and copper [104]. Another study found that low-cost adsorbent Algeria clay that is composed of predominantly montmorillonite and kaolinite has the capacity of adsorbing Cu(II) at pH of 6.5 and 20°C with maximum adsorption capacity of 12.22 mg/g [105]. However, treated Algeria clay under similar condition as the untreated clay has adsorption capacity of 15.40 mg/g [105].…”
Section: Mixture Of Oxide Clay And/or Other Materialsmentioning
“…However, treated Algeria clay under similar condition as the untreated clay has adsorption capacity of 15.40 mg/g [105]. The process of adsorption was spontaneous and exothermic [105]. Sorption of copper (II) ion on palygorskite and sepiolite is enhanced at elevated temperature [106].…”
Section: Mixture Of Oxide Clay And/or Other Materialsmentioning
confidence: 97%
“…Another study found that low-cost adsorbent Algeria clay that is composed of predominantly montmorillonite and kaolinite has the capacity of adsorbing Cu(II) at pH of 6.5 and 20°C with maximum adsorption capacity of 12.22 mg/g [105]. However, treated Algeria clay under similar condition as the untreated clay has adsorption capacity of 15.40 mg/g [105]. The process of adsorption was spontaneous and exothermic [105].…”
Section: Mixture Of Oxide Clay And/or Other Materialsmentioning
confidence: 99%
“…However, in a five metal ion system (Quinary), the adsorption of lead, cadmium and nickel are affected negatively by the presence of zinc and copper whereas the presence of lead, cadmium and nickel has synergistic effect on the sorption of zinc and copper [104]. Another study found that low-cost adsorbent Algeria clay that is composed of predominantly montmorillonite and kaolinite has the capacity of adsorbing Cu(II) at pH of 6.5 and 20°C with maximum adsorption capacity of 12.22 mg/g [105]. However, treated Algeria clay under similar condition as the untreated clay has adsorption capacity of 15.40 mg/g [105].…”
Section: Mixture Of Oxide Clay And/or Other Materialsmentioning
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.