Accurate branching ratios of the H-abstraction reactions from dimethylamine (DMA) by OH radicals are important in understanding the atmospheric fate of DMA. In this work, the reaction kinetics of the water-free, water-assisted, and self-assisted H-abstraction reactions between DMA and OH radicals are accurately determined using the multipath canonical variational theory with the small-curvature tunneling correction, to explore the catalytic effects of the reactant (DMA) and product (water). To choose a suitable method that well describes the current reaction systems, various combinations with seven DFT methods and six basis sets are first evaluated, and the M08-HX/ ma-TZVP method is identified as the most appropriate, with a mean unsigned deviation of 0.9 kcal mol −1 against the goldstandard CCSD(T)/CBS(T-Q) method. Based on the determined potential energy surfaces with the considerations of ground-state structures and specific-reaction parameters of zero-point energies, rate constants and branching ratios are calculated in a wide temperature range. The calculations show that the participation of water and DMA can lead to three-body complexes with a lower energy and influence the energy barriers, but neither of them shows the catalytic effect on the H-abstraction reactions in terms of kinetics. Additionally, the branching ratio analysis demonstrates that the product distribution is significantly altered in the presence of DMA and water.