2021
DOI: 10.1039/d0ta10227j
|View full text |Cite
|
Sign up to set email alerts
|

Advancement in graphene-based nanocomposites as high capacity anode materials for sodium-ion batteries

Abstract: This review provides a path to achieve economic, safe, and energy-efficient graphene composites as anode materials for high-energy sodium-ion batteries.

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
24
0
1

Year Published

2021
2021
2023
2023

Publication Types

Select...
10

Relationship

2
8

Authors

Journals

citations
Cited by 51 publications
(25 citation statements)
references
References 261 publications
0
24
0
1
Order By: Relevance
“…Graphene, a two-dimensional (2D) carbonaceous material derived from graphite, is a promising candidate as an electrode in SIBs and demonstrates high electrical conductivity (~2000 S ), good thermal conductivity (4840–5300 W ), excellent cycle life, and flexibility due to many defects emerging from the residual oxygen-containing groups and its large surface area (~1500 ). In addition, the larger interlayer distance in graphene (0.37 nm) provides more active sites for the ion carriers compared to graphite (0.34 nm) [ 40 ].…”
Section: Resultsmentioning
confidence: 99%
“…Graphene, a two-dimensional (2D) carbonaceous material derived from graphite, is a promising candidate as an electrode in SIBs and demonstrates high electrical conductivity (~2000 S ), good thermal conductivity (4840–5300 W ), excellent cycle life, and flexibility due to many defects emerging from the residual oxygen-containing groups and its large surface area (~1500 ). In addition, the larger interlayer distance in graphene (0.37 nm) provides more active sites for the ion carriers compared to graphite (0.34 nm) [ 40 ].…”
Section: Resultsmentioning
confidence: 99%
“…Graphene is a derivative of graphite consisting of 2D carbon sheets that are layer-by-layer assembled through π-π interactions. [58][59][60][61][62][63] The manufacturing process of graphene is relatively simple and includes processes such as graphene oxide (GO) preparation [64][65][66][67] or the exfoliation 68,69 of graphite that enable the tuning of its interlayer distance (Figure 4A), 64 which is important for the intercalation of large K ions. Moreover, graphene has desirable physical and chemical properties such as a high surface area, energy storage density, and electronic conductivity.…”
Section: Graphene Anodesmentioning
confidence: 99%
“…随着"碳中和、碳达峰"概念的提出,新能源的 重要性日益凸显。作为新能源中应用最广泛的一种, 锂离子电池已经广泛渗透进了人类的日常生活 [1][2] 。 然而,地球上锂资源的储量十分有限,且其分布的不 均匀性导致我国锂离子电池的发展十分容易受到 "卡 脖子"的风险。因此,寻求新型的低成本、资源丰富 的高性能二次电池体系以替代锂离子电池成为能源 可持续发展的关键。钠与锂属于同族元素,从而具有 很多相似的性质, 且钠在地球上储量丰富, 成本低廉, 因此, 钠离子电池已成为未来储能电池发展的重要方 向之一 [3][4][5] [6][7][8][9] 。因此,新型高容量、长循环 寿命的负极材料的研发尤为重要。近年来,碳材料、 合金材料、金属氧/硫/硒化物等均被广泛研究,其中 碳材料循环性能稳定但容量低 [10] ; 合金材料具有高的 理论容量,但存在巨大的体积膨胀 [11] ;金属氧化物理 论容量较高,但电导率较低 [12] 。理想的钠离子电池负 极材料需要满足高导电性、 较小的体积膨胀以及长循 环寿命等要求,因此,金属硫族化合物开始逐渐进入 人们的视野。 图 1 钠离子电池负极材料 [13][14][15][16][17][18] Figure 1 Anode materials of sodium ion batteries 金属硫族化合物包括金属硫化物与金属硒化物, 具有较大的层间距以及较高的理论容量, 因此被认为 是最有应用前景的钠离子电池负极材料。 而硒相比硫 具有更大的原子半径以及更强的金属性, 且金属硒化 物具有更窄的带隙和线宽, 因此具有更高的导电性以 及更大的层间距 [19][20] 。同时,金属硒化物在电化学脱 嵌钠过程中发生转化/合金型反应机理,从而表现出 很高的储钠容量。金属硒化物可以分为层状结构(包 括 MoSe2,SnSe,SnSe2,WSe2,TiSe2 等)及非层状 结构(包括 FeSe2,ZnSe,CoSe2,NiSe2 等) 。层状 结构金属硒化物通常是由金属原子 M 夹在两层硒 (Se)原子之间形成的三层结构(Se-M-Se) ,层间以 共价键相连,而每个结构之间则是以范德华力结合, 钠离子很容易在其中嵌入与脱出; 而非层状金属硒化 物大多可以从天然矿石中提出, 具有低成本以及高理 论容量的优势 [21][22] [26] ; (b) DR-MoSe2 和 DF-MoSe2 的 BET 测试 [27] ; (c) MoSe2-MoO3/C 的 HRTEM 图像 [28] ;(d) MoSe2@rGO 的微观键合,(e) Mo、C 元素分峰图 [29] 。 Figure 2 (a) The migration path of Na between and on the surface of MoS2 [26] ; (b) BET of DR-MoSe2 and DF-MoSe2 [27] ; (c) HRTEM image of MoSe2-MoO3/C [28] ; (d) Microscopic bonding of MoSe2@rGO, (e) XPS fitting curves of Mo and C elements [29] .…”
Section: 引言unclassified