Currently, efficient utilization of low-grade thermal energy is a great challenge. Thermoelectricity is an extremely promising method of generating electrical energy from temperature differences. As a green energy conversion technology, thermo-electrochemical cells (TECs) have attracted much attention in recent years for their ability to convert thermal energy directly into electricity with high thermal power. Within TECs, anions and cations gain and lose electrons, respectively, at the electrodes, using the potential difference between the hot and cold terminals of the electrodes by redox couples. Additionally, the anions and cations therein are constantly circulating and mobile via concentration diffusion and thermal diffusion, providing an uninterrupted supply of power to the exterior. This review article focuses mainly on the operation of TECs and recent advances in redox couples, electrolytes, and electrodes. The outlook for optimization strategies regarding TECs is also outlined in this paper.