Leptin regulates energy homeostasis through central activation of multiple signaling pathways mediated byOb-Rb, the long form of leptin receptor. Leptin resistance underlies the pathogenic development of obesity, which is closely associated with environmental factors. To further understand the physiological function of leptin signaling mechanisms, we generated a knock-in line of mice (Y985F) expressing a mutant Ob-Rb with a phenylalanine substitution for Tyr 985 , one of the three intracellular tyrosines that mediate leptin's signaling actions. Surprisingly, whereas young homozygous Y985F animals were slightly leaner, they exhibit adult-onset or diet-induced obesity. Importantly, both age-dependent and diet-induced deterioration of energy balance was paralleled with pronounced leptin resistance, which was largely attributable to attenuation of leptin-responsive hypothalamic STAT3 activation as well as prominently elevated expression of hypothalamic SOCS3, a key negative regulator of leptin signaling. Thus, these results unmask distinct binary roles for Try 985 -mediated signaling in energy metabolism, acting as an age/diet-dependent regulatory switch to counteract age-associated or diet-induced obesity.As a component of the metabolic syndrome, obesity is closely associated with increased risk for the development of type 2 diabetes and cardiovascular disorders (16). Arising from a chronic imbalance between energy intake and expenditure, the pathogenic progression of obesity is attributable to the complex interactions between genetic factors and environmental influences. In mammals, energy balance is maintained through multiple homeostatic mechanisms that operate coordinately in response to hormonal and nutritional cues. Leptin is an adipose-secreted hormone (43) that plays a pivotal role in the regulation of energy metabolism. Acting through its activeform receptor Ob-Rb in distinct classes of leptin-responsive neurons (11,14,34), leptin activates multiple signaling pathways in the hypothalamus to regulate food intake and energy expenditure. Mice with deficiency in leptin (ob/ob) or its functional receptor (db/db) develop morbid obesity, hyperphagia, and diabetes (20). Impaired leptin responsiveness, i.e., leptin resistance (33), is a key characteristic of the metabolic defects that are responsible for disrupted energy control, presumably underlying the pathogenic development of human obesity (29). Although diminished leptin signaling has been found to occur in association with aging (21, 39) or feeding of a high-fat diet (HFD) (17, 18), the exact physiological mechanisms linking the environmental factors to the impairment in leptin-mediated regulation of energy metabolism remain largely elusive.Leptin binds to Ob-Rb and elicits an array of subsequent intracellular signaling cascades (7, 22) via Jak2 phosphorylation. The mouse Ob-Rb comprises three cytoplasmic tyrosine residues, Tyr 985 , Tyr 1077 , and Tyr 1138 , which are known to be phosphorylated and mediate leptin's physiological functions (22,26). The phosp...