Mast cells are found in connective or mucosal tissues of the body, and play an important role in allergic reactions as well as the inflammatory and immune responses. Because mast cells produce and secrete a large number of mediators, as their functions and mechanisms are complex. Mast cells possess a unique feature of presenting diverse phenotypes that are dependent on the tissue microenvironments during their maturation in vivo. Therefore we advocate that non-tumor cells are more desirable than tumor cells such as Rat Basophilic Leukemia cells (RBL-2H3) and Human Mast Cells (HMC-1) for determining the changes in the character of mast cells in vivo. We previously reported a new non-tumor mast cell line, NCL-2, and described the morphological and proliferative changes occurring in mast cells growing on Honeycomb-like Films (HCF) using NCL-2 cells. In the present study, we compared the changes in the proliferation pattern and morphology between NCL-2 and RBL-2H3 cells as well as in the spontaneous release of histamine and Leukotriene B4 (LTB4) from these cells cultured on HCF as the surrounding micro environment. Compared with RBL-2H3 cells, which have been most frequently used for mast cell research, NCL-2 cells displayed increasing floating cells, multinuclear formation, and no changing of histamine release but decreasing LTB4 release, on the HCFs. Hence, we are convinced that HCF plays different roles as physical stimuli for the spontaneous release of histamine and LTB4 from NCL-2 and RBL-2H3 cells. HCF has huge potential for use in the new therapeutic treatment of allergy and inflammation by inhibiting the function of mast cells.