2015
DOI: 10.1016/j.procs.2015.04.024
|View full text |Cite
|
Sign up to set email alerts
|

An Efficient Association Rule Based Clustering of XML Documents

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1

Citation Types

0
2
0
1

Year Published

2016
2016
2023
2023

Publication Types

Select...
2
2
1

Relationship

0
5

Authors

Journals

citations
Cited by 5 publications
(3 citation statements)
references
References 6 publications
0
2
0
1
Order By: Relevance
“…There are other studies like [41] in web mining with a concentration of XML document clustering based on content to find the more interesting XML documents on the web. Corpus like Wikipedia, which exist on the web, are huge and classified as big data collection.…”
Section: Xml Document Clustering Based On Only Content Featuresmentioning
confidence: 99%
See 1 more Smart Citation
“…There are other studies like [41] in web mining with a concentration of XML document clustering based on content to find the more interesting XML documents on the web. Corpus like Wikipedia, which exist on the web, are huge and classified as big data collection.…”
Section: Xml Document Clustering Based On Only Content Featuresmentioning
confidence: 99%
“…Finding similar features for such a collection takes lots of time. In order to solve this problem, Muralidhar et al [41] proposed a hybrid approach that first finds frequent XML documents through the Apriori algorithm of Association rule mining and then clusters XML documents by the popular K-means clustering algorithm. This approach can be useful for clustering of XML documents in the web environment and improving retrieving information in the web, but ignoring infrequent documents is not appropriate for an static XML document collection like DL because each document in the collection may meet the need of a user.…”
Section: Xml Document Clustering Based On Only Content Featuresmentioning
confidence: 99%
“…[1] Sistem Rekomendasi (SR) yang baik memberikan rekomendasi produk yang mungkin menarik bagi pengguna yang tidak berencana membeli menjadi membeli lebih banyak lagi dan akan meningkatkan penjualan [2]. SR dapat menghasilkan rekomendasi dengan berbagai cara dan menggunakan berbagai macam metode, salah satunya adalah memanfaatkan tumpukan kasus lama atau tumpukan data transaksi lama yang dapat menghasilkan informasi dengan metode ARM [3]. ARM akan menghasilkan pola aturan dari data transaksi lama tersebut dan aturan yang dihasilkan dapat dimanfaatkan untuk rekomendasi [4].…”
Section: Pendahuluanunclassified