2022
DOI: 10.1016/j.jcmds.2022.100034
|View full text |Cite
|
Sign up to set email alerts
|

An improved K-medoids clustering approach based on the crow search algorithm

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
4
0
1

Year Published

2022
2022
2024
2024

Publication Types

Select...
9
1

Relationship

0
10

Authors

Journals

citations
Cited by 18 publications
(5 citation statements)
references
References 12 publications
0
4
0
1
Order By: Relevance
“…If a point is found with the bestimproved value of distortion function, the new data point will replace the current best data point. These newly generated best data points form the new medoids (40)(41)(42).…”
Section: Discussionmentioning
confidence: 99%
“…If a point is found with the bestimproved value of distortion function, the new data point will replace the current best data point. These newly generated best data points form the new medoids (40)(41)(42).…”
Section: Discussionmentioning
confidence: 99%
“…K-medoids, known as Partitioning Arounds Medoids (PAM), is one of the partitioning methods because it uses the medoid (median) as the center point of a cluster [17]. The advantage of k medoids is that the clustering results do not depend on the order of the data [18].…”
Section: K-medoidsmentioning
confidence: 99%
“…Metode K-Medoids clustering merupakan metode nonhierarchical clustering dengan medoid sebagai pusat kelompoknya. Medoid dapat mewakili pusat cluster yang sebenarnya karena ketahanannya terhadap outlier dan noise [18]. Algoritma pengelompokan pada metode K-Medoids clustering adalah sebagai berikut [9]…”
Section: K-medoids Clusteringunclassified