At present, most urban rail transit systems adopt an operation mode with a single long routing. The departure frequency is determined by the maximum section passenger flow. However, when the passenger flow varies greatly within different sections, this mode will lead to a low load factor in some sections, resulting in a waste of capacity. In view of this situation, this paper develops a nonlinear integer programming model to determine an optimal timetable with a balanced scheduling mode, where the wasted capacity at a constant departure frequency can be reduced with a slight increase in passenger waiting time. Then, we simplify the original model into a single-objective integer optimization model through normalization. A genetic algorithm is designed to find the optimal solution. Finally, a numerical example is presented based on real-world passenger and operation data from Beijing Metro Line 4. The results show that the double-routing optimization model can reduce wasted capacity by 9.5%, with a 4.5% increase in passenger waiting time, which illustrates the effectiveness of this optimization model.