Highly cross-linked ultrahigh molecular weight polyethylene (UHMWPE) was introduced to decrease wear debris and osteolysis. During cross-linking, free radicals are formed, making highly cross-linked polyethylene vulnerable to oxidative degradation. In order to reduce this process, anti-oxidant vitamin E can be incorporated in polyethylene. This review provides an overview of the effects of vitamin E incorporation on major complications in total joint arthroplasty: material failure due to oxidative degradation, wear debris and subsequent periprosthetic osteolysis, and prosthetic joint infections. Secondly, this review summarizes the first clinical results of total hip and knee arthroplasties with vitamin E incorporated highly cross-linked polyethylene. Based on in vitro studies, incorporation of vitamin E in polyethylene provides good oxidative protection and preserves low wear rates. Incorporation of vitamin E may have the beneficial effect of reduced inflammatory response to its wear particles. Some microorganisms showed reduced adherence to vitamin E-incorporated UHMWPE; however, clinical relevance is doubtful. Short-term clinical studies of total hip and knee arthroplasties with vitamin E-incorporated highly cross-linked UHMWPE reported good clinical results and wear rates similar to highly cross-linked UHMWPE without vitamin E.