Both dispersed and concentrated shot peening can be an effective method for the finishing of machine components. This work investigates the effect of two different shot peening (SP) processes conducted with the same technological parameters on selected properties of the surface layer of gray cast iron EN-GJL 250. Specifically, regular shot peening (RSP) and semi-random shot peening (SRSP) were investigated in the study. The results demonstrated that the surface quality of EN-GJL 250 samples was higher after RSP than after SRSP. The analyzed surface roughness parameters were lower after RSP than after SRSP, with the exception of the Rvk parameter. As a result of RSP, the analyzed roughness parameters increased from 5% to 62% in relation to their values after pre-treatment. The lowest values of the surface roughness parameters were obtained after RSP conduced with the impact energy E = 100 mJ, the distance between the dimples x = 0.3 mm, and the diameter of the shot peening element d = 14.3 mm. Assessment of the 3D surface topography showed significant differences in the formation of machining traces depending on the employed surface treatment. In RSP, the traces were arranged in a uniform manner, with the assumed step, whereas in SRSP the shot peening traces had no set pattern of orientation. The application of RSP and SRSP caused an increase in surface microhardness. The maximum surface microhardness was 75 HV0.5 for RSP and 98 HV0.5 for SRSP. Residual stresses were higher after SRSP than after RSP. Compressive residual stresses were induced in both types of shot peening process.