2023
DOI: 10.1101/2023.04.28.538585
|View full text |Cite
Preprint
|
Sign up to set email alerts
|

Analyzing bivariate cross-trait genetic architecture in GWAS summary statistics with the BIGA cloud computing platform

Abstract: As large-scale biobanks provide increasing access to deep phenotyping and genomic data, genome-wide association studies (GWAS) are rapidly uncovering the genetic architecture behind various complex traits and diseases. GWAS publications typically make their summary-level data (GWAS summary statistics) publicly available, enabling further exploration of genetic overlaps between phenotypes gathered from different studies and cohorts. However, systematically analyzing high-dimensional GWAS summary statistics for … Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...

Citation Types

0
0
0

Year Published

2024
2024
2024
2024

Publication Types

Select...
1

Relationship

0
1

Authors

Journals

citations
Cited by 1 publication
references
References 39 publications
0
0
0
Order By: Relevance