The immunomodulatory prodrug 2-amino-2-(2-[4-octylphenyl]ethyl)-1,3-propanediol (FTY720), which acts as an agonist for sphingosine-1-phosphate (S1P) receptors (S1PR) when phosphorylated, is proposed as a novel pain therapeutic. In this study, we assessed FTY720-mediated antinociception in the radiant heat tail-flick test and in the chronic constriction injury (CCI) model of neuropathic pain in mice. FTY720 produced antinociception and antiallodynia, respectively, and these effects were dose-dependent and mimicked by the S1PR1-selective agonist CYM-5442. Repeated administration of FTY720 for 1 week produced tolerance to acute thermal antinociception, but not to antiallodynia in the CCI model. S1PR-stimulated [S]GTPS autoradiography revealed apparent desensitization of G protein activation by S1P or the S1PR1 agonist 5-[4-phenyl-5-(trifluoromethyl)-2-thienyl]-3-[3-(trifluoromethyl)phenyl]-1,2,4-oxadiazole (SEW-2871) throughout the brain. Similar results were seen in spinal cord membranes, whereby the E value of S1PR-stimulated [S]GTPS binding was greatly reduced in repeated FTY720-treated mice. These results suggest that S1PR1 is a primary target of FTY720 in alleviating both acute thermal nociception and chronic neuropathic nociception. Furthermore, the finding that tolerance develops to antinociception in the tail-flick test but not in chronic neuropathic pain suggests a differential mechanism of FTY720 action between these models. The observation that repeated FTY720 administration led to desensitized S1PR1 signaling throughout the central nervous system suggests the possibility that S1PR1 activation drives the acute thermal antinociceptive effects, whereas S1PR1 desensitization mediates the following: 1) tolerance to thermal antinociceptive actions of FTY720 and 2) the persistent antiallodynic effects of FTY720 in neuropathic pain by producing functional antagonism of pronociceptive S1PR1 signaling.