Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
Numerical simulation of the inhomogeneous medium elements appears to be one of the current trends in the continuum mechanics. Approaches based on combined application of the non-destructive testing and numerical simulation methods were significantly developed. The paper proposes a technique for numerical simulation of the porous structure elements based on their computer tomography. Calculations were carried out by the finite element method using the eight-node isoparametric finite element of the continuous medium with linear approximation of the geometric parameters and the displacement field. Stiffness matrix of each finite element was integrated by using the weight function; its values corresponded to the material permeability in the current microelement volume. A static calculation technique for the porous structure elements is described based on the material spatial distribution. Simulation was carried out on the example of samples of the pygmy pigs bone organs. The tests corresponded to a three-point bend. Computational grids were constructed by filtering at the threshold value that set fraction of the elastic material content in the volume. Numerical calculations made it possible to determine the displacement field and the stress-strain state. Data reliability was established on the basis of the energy distribution error over the voltages. Results were validated according to the full-scale experiment data. The relative error was of 3...10%; therefore, simulation described the sample mechanical destruction with sufficient degree of reliability. The proposed technique demonstrated its efficiency in solving the problem of describing behavior of the inhomogeneous media elements exposed to the external loads both due to high performance at the numerical model construction stage, and due to excluding the need to accurately restore the sample computational domain.
Numerical simulation of the inhomogeneous medium elements appears to be one of the current trends in the continuum mechanics. Approaches based on combined application of the non-destructive testing and numerical simulation methods were significantly developed. The paper proposes a technique for numerical simulation of the porous structure elements based on their computer tomography. Calculations were carried out by the finite element method using the eight-node isoparametric finite element of the continuous medium with linear approximation of the geometric parameters and the displacement field. Stiffness matrix of each finite element was integrated by using the weight function; its values corresponded to the material permeability in the current microelement volume. A static calculation technique for the porous structure elements is described based on the material spatial distribution. Simulation was carried out on the example of samples of the pygmy pigs bone organs. The tests corresponded to a three-point bend. Computational grids were constructed by filtering at the threshold value that set fraction of the elastic material content in the volume. Numerical calculations made it possible to determine the displacement field and the stress-strain state. Data reliability was established on the basis of the energy distribution error over the voltages. Results were validated according to the full-scale experiment data. The relative error was of 3...10%; therefore, simulation described the sample mechanical destruction with sufficient degree of reliability. The proposed technique demonstrated its efficiency in solving the problem of describing behavior of the inhomogeneous media elements exposed to the external loads both due to high performance at the numerical model construction stage, and due to excluding the need to accurately restore the sample computational domain.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.