Acidithiobacillus ferrooxidans is a chemoautotrophic bacterium that plays an important role in metal bioleaching processes. Despite the high level of tolerance to heavy metals shown by A. ferrooxidans, the genetic basis of copper resistance in this species remains unknown. We investigated the gene expression in response to copper in A. ferrooxidans LR using RNA arbitrarily primed polymerase chain reaction (RAP-PCR). One hundred and four differentially expressed genes were identified using eight arbitrary primers. Differential gene expression was confirmed by DNA slot blot hybridization, and approximately 70% of the RAP-PCR products were positive. The RAP-PCR products that presented the highest levels of induction or repression were cloned, sequenced and the sequences were compared with those in databases using the BLAST search algorithm. Seventeen sequences were obtained. The RAP-PCR product with the highest induction ratio showed similarity with the A. ferrooxidans cytochrome c. A high similarity with the thiamin biosynthesis gene thiC from Caulobacter crescentus was observed for another RAP-PCR product induced by copper. An RAP-PCR product repressed by copper showed significant similarity with the carboxysome operon that includes the ribulose-1,5-bisphosphate carboxylase/oxygenase complex from A. ferrooxidans and another copper-repressed product was significantly similar to the XyIN outer membrane protein from Pseudomonas putida. Finally, RAP-PCR products of unknown similarities were also present.