Background
When problems with compatibility arise, transfusion services often perform time-consuming serologic testing to locate antigen-negative red cell units for safe transfusion. New technologies enabled red cell genotyping for all clinically relevant blood group antigens. We performed mass-scale genotyping and provided access to a large red cell database to meet the demand for antigen-negative red cell units beyond ABO and Rh.
Methods
A red cell genotype database was established in 2010. Hospitals were given online access to a web-based antigen query portal in 2013 to find antigen-negative units in their inventories.
Findings
Genotype data were analyzed for 43,066 blood donors covering a set of 42 clinically relevant red cell antigens. Requests were filled for 5661 of 5672 patient encounters (99.8%) requiring antigen-negative red cell units in a multi-ethnic and multi-racial population. Red cell genotyping met the demand for antigen-negative blood in 5339 of 5672 (95%) patient encounters, while 333 remaining requests were filled using serologic data. In a pilot phase, seven community and rural transfusion services searched their local inventories using an online antigen query portal.
Interpretation
Red cell genotyping has the potential to transform the way antigen-negative red cell units are provided. An antigen query portal may reduce the need to ship blood or perform serologic screening. The wealth of genotype data, easily accessible online, facilitates the supply of affordable antigen-negative red cell units for patient safety. Physicians may recognize these new efficiencies for patient transfusion support.
Funding
BloodCenter of Wisconsin Diagnostic Laboratories Strategic Initiative and the NIH Clinical Center Intramural Research Program.