Abstract:We study a general allocation setting where agent valuations are concave additive. In this model, a collection of items must be uniquely distributed among a set of agents, where each agent-item pair has a specified utility. The objective is to maximize the sum of agent valuations, each of which is an arbitrary non-decreasing concave function of the agent's total additive utility. This setting was studied by Devanur and Jain (STOC 2012) in the online setting for divisible items. In this paper, we obtain both mu… Show more
Set email alert for when this publication receives citations?
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.