“…Expression forecasting methods also vary widely in terms of implementation and expected input. Certain methods use prior drafts of causal network structure (CellOracle, Dictys, ScanBMA, scREMOTE, scKINETICS, D-SPIN); prior knowledge of gene-gene functional relatedness (GEARS); or pre-training on millions of cells (scGPT, GeneFormer) (Burdziak et al, 2023;Cui et al, 2023;Jiang et al, 2023;Kamimoto et al, 2023;Lopez, Hütter, et al, 2022;Pemberton-Ross, Pachkov, & van Nimwegen, 2015;Qiu et al, 2022;Roohani et al, 2022;Theodoris et al, 2023;Wang et al, 2022;Yeo et al, 2021;Young, Raftery, & Yeung, 2014). Regarding analytical choices, key distinctive features include different regression methods (DCD-FG, CellOracle, Dynamo), use of low-rank structure (DCD-FG, ARMADA, D-SPIN); special handling of complex time-series (PRESCIENT); and modeling of transcription rates in addition to transcript levels (Dynamo, scKINETICS).…”