The displacement of rotational generation and the consequent reduction in system inertia is expected to have major stability and reliability impacts on modern power systems. Fast-frequency support strategies using energy storage systems (ESSs) can be deployed to maintain the inertial response of the system, but information regarding the inertial response of the system is critical for the effective implementation of such control strategies. In this paper, a moving horizon estimation (MHE)-based approach for online estimation of inertia constant of low inertia microgrids is presented. Based on the frequency measurements obtained in response to a non-intrusive excitation signal from an ESS, the inertia constant was estimated using local measurements from the ESS's phase-locked loop. The proposed MHE formulation was first tested in a linearized power system model, followed by tests in a modified microgrid benchmark from Cordova, Alaska. Even under moderate measurement noise, the technique was able to estimate the inertia constant of the system well within ±20% of the true value. Estimates provided by the proposed method could be utilized for applications such as fast-frequency support, adaptive protection schemes, and planning and procurement of spinning reserves.INDEX TERMS Energy storage systems, inertia estimation, microgrids, moving horizon estimation, virtual inertia.