“…RF was selected for this study because it generally outperforms conventional classifiers such as the Gaussian maximum likelihood classifier [61,62], while performing favorably, or equally well, to other non-parametric approaches; e.g., CART [63,64], Support Vector Machines [32,65,66], Artificial Neural Networks [67], and K-Nearest Neighbor [68]. It is a powerful non-linear and non-parametric classifier that allows for fusion and aggregation of high-dimensional data from various sources (e.g., optical, SAR, and topography [30,69,70]; SAR and topography [21,58,71]; and optical and topography [72][73][74]). RF produces independently constructed classification trees, similar to the Classification and Regression (CART) method, using bootstrapped samples of the original data [75,76].…”