2015 IEEE International Conference on Rehabilitation Robotics (ICORR) 2015
DOI: 10.1109/icorr.2015.7281284
|View full text |Cite
|
Sign up to set email alerts
|

Assessment-driven arm therapy at home using an IMU-based virtual reality system

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
3
1
1

Citation Types

0
36
0
8

Year Published

2016
2016
2022
2022

Publication Types

Select...
4
4
1

Relationship

0
9

Authors

Journals

citations
Cited by 53 publications
(44 citation statements)
references
References 23 publications
0
36
0
8
Order By: Relevance
“…El ambiente de juego tenía tres niveles de dificultad (Figura 5), y la diferencia entre estos se respaldó en la cantidad de movimientos necesarios para superar cada nivel, por lo que el juego logra ser atractivo para el jugador cuando resulta difícil de jugar [31], siendo esta una característica importante, teniendo en cuenta que los niveles de dificultad conllevan a un factor de alta motivación en el individuo durante una terapia [32]. niveles de complejidad de la pista.…”
Section: Resultsunclassified
“…El ambiente de juego tenía tres niveles de dificultad (Figura 5), y la diferencia entre estos se respaldó en la cantidad de movimientos necesarios para superar cada nivel, por lo que el juego logra ser atractivo para el jugador cuando resulta difícil de jugar [31], siendo esta una característica importante, teniendo en cuenta que los niveles de dificultad conllevan a un factor de alta motivación en el individuo durante una terapia [32]. niveles de complejidad de la pista.…”
Section: Resultsunclassified
“…Such an adaptation strategy has the potential to facilitate reinforcement learning (Naros et al, 2016b) by progressively challenging the patient (Naros and Gharabaghi, 2015). Recent studies explored automated adaptation of training difficulty in stroke rehabilitation of less severely affected patients (Metzger et al, 2014; Wittmann et al, 2015). More specifically, both robot-assisted rehabilitation of proprioceptive hand function (Metzger et al, 2014) and inertial sensor-based virtual reality feedback of the arm (Wittmann et al, 2015) benefit from assessment-driven adjustments of exercise difficulty.…”
Section: Introductionmentioning
confidence: 99%
“…Recent studies explored automated adaptation of training difficulty in stroke rehabilitation of less severely affected patients (Metzger et al, 2014; Wittmann et al, 2015). More specifically, both robot-assisted rehabilitation of proprioceptive hand function (Metzger et al, 2014) and inertial sensor-based virtual reality feedback of the arm (Wittmann et al, 2015) benefit from assessment-driven adjustments of exercise difficulty. Furthermore, a direct comparison between adaptive BRI training and non-adaptive training (Naros et al, 2016b) or sham adaptation (Bauer et al, 2016a) in healthy patients revealed the impact of reinforcement-based adaptation for the improvement of performance.…”
Section: Introductionmentioning
confidence: 99%
“…The full-body motion capture technology has applications in various domains, including virtual reality [1], athletic training [2], biomedical engineering [3] and rehabilitation [4,5]. The demand for rehabilitation services and the resulting demand for systems capable of body movement monitoring continue to grow due to the increasing population of ageing people.…”
Section: Introductionmentioning
confidence: 99%