2022
DOI: 10.1002/geot.202200053
|View full text |Cite
|
Sign up to set email alerts
|

Automated geological model updates during TBM operation – An approach based on probabilistic machine learning concepts

Abstract: Geological models are commonly used to predict the position of relevant geological features, such as rock types or faults in the subsurface. These models can contain significant uncertainties, as the geological input parameters are often not perfectly known. Predictions of geological features, for example, on the level of a tunnel during an excavation process, are therefore uncertain. This work shows how these uncertainties can be estimated using probabilistic concepts. Furthermore, an approach is presented to… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1

Citation Types

0
1
0

Year Published

2023
2023
2023
2023

Publication Types

Select...
2
1

Relationship

0
3

Authors

Journals

citations
Cited by 3 publications
(1 citation statement)
references
References 25 publications
0
1
0
Order By: Relevance
“…Some promising research domains for machine learning in tunnelling are the geological prognosis ahead of the face, the interpretation of monitoring results, automation and maintenance [32]. At present, however, research appears to be focussed on the following topics: prediction of TBM operational parameters [34,[39][40][41][42][43][44][45][46], penetration rate [47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63], porewater pressure [64], ground settlement [65][66][67], disc cutter replacement [68][69][70], jamming risk [71,72] and geological classification [73][74][75][76]). Few authors estimated the face support pressure of TBMs with machine learning [35,52].…”
Section: Introductionmentioning
confidence: 99%
“…Some promising research domains for machine learning in tunnelling are the geological prognosis ahead of the face, the interpretation of monitoring results, automation and maintenance [32]. At present, however, research appears to be focussed on the following topics: prediction of TBM operational parameters [34,[39][40][41][42][43][44][45][46], penetration rate [47][48][49][50][51][52][53][54][55][56][57][58][59][60][61][62][63], porewater pressure [64], ground settlement [65][66][67], disc cutter replacement [68][69][70], jamming risk [71,72] and geological classification [73][74][75][76]). Few authors estimated the face support pressure of TBMs with machine learning [35,52].…”
Section: Introductionmentioning
confidence: 99%