Abstract:This paper presents a constrained finite horizon model predictive control (MPC) scheme for regulation of the annular pressure in a well during managed pressure drilling from a floating vessel subject to heave motion. In addition the robustness of a controller to deal with heave disturbances despite uncertainties in the friction factor and bulk modulus is investigated. The stochastic model describing sea waves in the North Sea is used to simulate the heave disturbances. The results show that the closed-loop simulation without disturbance has a fast regulation response, without any overshoot, and is better than a proportional-integralderivative (PID) controller. The constrained MPC for managed pressure drilling shows further improved disturbance rejection capabilities with measured or predicted heave disturbance. Monte Carlo simulations show that the constrained MPC has a good performance to regulate set point and attenuate the effect of heave disturbance in case of significant uncertainties in the well parameter values.