2018
DOI: 10.1016/j.radmeas.2018.07.014
|View full text |Cite
|
Sign up to set email alerts
|

Automatic detection of anomalous thermoluminescent dosimeter glow curves using machine learning

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2

Citation Types

0
2
0
1

Year Published

2019
2019
2024
2024

Publication Types

Select...
7

Relationship

0
7

Authors

Journals

citations
Cited by 11 publications
(3 citation statements)
references
References 13 publications
0
2
0
1
Order By: Relevance
“…Recently, researchers have explored the feasibility of using ML algorithms for identifying anomalous GCs, to study the characteristics of TL emission and for the estimation of elapsed time after exposure [3,[8][9][10][11][12][13][14][15]. As mentioned earlier, we demonstrated the effectiveness of ML algorithms in identifying abnormal GCs and classifying them based on the associated abnormalities [3].…”
Section: Introductionmentioning
confidence: 52%
“…Recently, researchers have explored the feasibility of using ML algorithms for identifying anomalous GCs, to study the characteristics of TL emission and for the estimation of elapsed time after exposure [3,[8][9][10][11][12][13][14][15]. As mentioned earlier, we demonstrated the effectiveness of ML algorithms in identifying abnormal GCs and classifying them based on the associated abnormalities [3].…”
Section: Introductionmentioning
confidence: 52%
“…One of the earliest demonstrations of the potential of ML in TL dosimetry was by Moscovitch et al [14], who used an artificial neural network (ANN) to estimate doses in LiF:Mg:Ti-based four-element dosimeters. More recently, researchers have demonstrated the applicability of ML algorithms in TL dating, identification of anomalies in TL glow curves (GC), and classification of thermoluminescence features of natural halite [15][16][17][18][19][20][21][22][23]. In the present work, we aimed to develop an algorithm for estimating the average photon energy and the dose in terms of H p (d) from TL readouts of a three-element CaSO 4 :Dy dosimeter.…”
Section: Introductionmentioning
confidence: 99%
“…Nhằm xác định các thành phần, cấu trúc của vật liệu đã có một số nghiên cứu liên quan đến các thông số động học của bẫy TL của phổ TL (Peng, Dong, & Han, 2016;Nguyen, 2017;Nguyen, Tran, Nguyen & Nguyen, 2017. Một số nghiên cứu khác liên quan đến hiệu ứng fading của phổ TL (sự suy giảm tín hiệu TL theo thời gian) có sử dụng máy học và phần mềm Python (Amit & Datz, 2018;Kröninger, Mentzel, Theinert, & Walbersloh, 2019;Theinert et al, 2018). Ngoài ra, gần đây, nhiều công trình khác đã nghiên cứu phân tích và xử lí phổ TL của nhiều loại vật liệu khác nhau (Aşlar, Şahiner, Polymeris, & Meriç, 2021;Bassinet & Le Bris, 2020;Peng, Kitis, Sadek, Karsu Asal, & Li, 2021).…”
unclassified