2018
DOI: 10.1002/widm.1251
|View full text |Cite
|
Sign up to set email alerts
|

Automatic synthesis of fuzzy systems: An evolutionary overview with a genetic programming perspective

Abstract: Studies in Evolutionary Fuzzy Systems (EFSs) began in the 90s and have experienced a fast development since then, with applications to areas such as pattern recognition, curve‐fitting and regression, forecasting and control. An EFS results from the combination of a Fuzzy Inference System (FIS) with an Evolutionary Algorithm (EA). This relationship can be established for multiple purposes: fine‐tuning of FIS's parameters, selection of fuzzy rules, learning a rule base or membership functions from scratch, and s… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
1
1
1

Citation Types

0
1
0
2

Year Published

2020
2020
2024
2024

Publication Types

Select...
4
2

Relationship

0
6

Authors

Journals

citations
Cited by 8 publications
(3 citation statements)
references
References 112 publications
(154 reference statements)
0
1
0
2
Order By: Relevance
“…Nevertheless, the fundamental core of a FIS lies in the establishment of the rule base, which presents two major obstacles: the establishment of a rule base requires expert knowledge of the field of study, and the refinement of the MF base is a key element of the process to reduce the output error. The present study utilizes an ANFIS to attain the identification and fine-tuning of a FIS [28]. The global structure of the ANFIS shares the same elements as the FIS, except for the neural network component which Includes numerous nodes that resemble human neurons [29].…”
Section: The Conception Of the Speed Controllermentioning
confidence: 99%
“…Nevertheless, the fundamental core of a FIS lies in the establishment of the rule base, which presents two major obstacles: the establishment of a rule base requires expert knowledge of the field of study, and the refinement of the MF base is a key element of the process to reduce the output error. The present study utilizes an ANFIS to attain the identification and fine-tuning of a FIS [28]. The global structure of the ANFIS shares the same elements as the FIS, except for the neural network component which Includes numerous nodes that resemble human neurons [29].…”
Section: The Conception Of the Speed Controllermentioning
confidence: 99%
“…Na Figura 1, adaptada de Cordon et al ( 2004), tem-se um esquema básico da automatização de um FIS, onde fica evidente o uso de uma meta-heurística (MH) com a incumbência de reduzir a intervenção humana. Costumase dividir um FIS em dois componentes que formam a Base de Conhecimento: Base de Regras (Rule Base, RB, em inglês), consistindo no conjunto de regras Fuzzy, e Base de Parâmetros (Parameter Base, PB, em inglês), que envolve os parâmetros remanescentes do FIS, como funções de pertinência, operadores de agregação e métodos de defuzzificação (Koshiyama et al, 2019). PSO.…”
Section: Gera ç ãO Autom áTica De Sistemas Fuzzyunclassified
“…Há duas abordagens básicas na construção da Base de Regras (Koshiyama et al, 2019), a saber: Classificador Michigan e Classificador Pittsburgh. Na abordagem Michigan cada regra do FIS é considerada um cromossomo, ou indivíduo.…”
Section: Regrasunclassified