Background: Bacillus subtilis strains have been widely studied for their innumerous benefits in agriculture, including viticulture. Providing numerous assets, B. subtilis spp. are described as promising plant-protectors against many pathogens and as influencers to adaptations in a changing environment. This study reports the draft genome sequence of the beneficial Bacillus subtilis PTA-271, isolated from the rhizospheric soil of healthy Vitis vinifera cv. Chardonnay at Champagne Region in France, attempting to draw outlines of its full biocontrol capacity. Results: The PTA-271 genome has a size of 4,001,755 bp, with 43.78% of G + C content and 3,945 protein coding genes. The draft genome of PTA-271 highlights (1) a functional swarming motility system hypothesizing a colonizing capacity and a strong interacting capacity, (2) strong survival capacities and (3) a set of genes encoding for bioactive substances. Bioactive compounds are known both to (i) stimulate plant growth or defenses such as hormones and elicitors, (ii) influence beneficial microbiota, and (ii) counteract pathogen aggressiveness such as effectors and many kinds of detoxifying enzymes. Conclusions: The plurality of the encoded biomolecules by Bacillus subtilis PTA-271 genome appears as strengths for PTA-271 biocontrol potential towards plants, offering a big potential against a broad spectrum of pathogens despite environmental constraints.