2018
DOI: 10.1080/10618600.2017.1407325
|View full text |Cite
|
Sign up to set email alerts
|

BAMLSS: Bayesian Additive Models for Location, Scale, and Shape (and Beyond)

Abstract: Standard-Nutzungsbedingungen:Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen Zwecken und zum Privatgebrauch gespeichert und kopiert werden.Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich machen, vertreiben oder anderweitig nutzen.Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen (insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten, gelten abweichend von diesen Nutzungsbedingungen die in… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

0
144
0
1

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
1

Relationship

4
3

Authors

Journals

citations
Cited by 111 publications
(145 citation statements)
references
References 47 publications
0
144
0
1
Order By: Relevance
“…All models were estimated within a Bayesian framework using the R-package bamlss [18]. Weakly informative normal priors were used for all coefficients.…”
Section: Methodsmentioning
confidence: 99%
See 1 more Smart Citation
“…All models were estimated within a Bayesian framework using the R-package bamlss [18]. Weakly informative normal priors were used for all coefficients.…”
Section: Methodsmentioning
confidence: 99%
“…All parts of the model are parameterized as structured additive models. We refer to the original methodological paper [1] and the documentation of the package bamlss [2] for further details. In our estimated models the longitudinal model per autoantibody y for subject i at the observed measurement times t ij was specified as a mixed model allowing smooth, nonlinear, and subject-specific trajectories over time as well as linear and nonlinear effects of the covariates x k …”
Section: Colorado Clinical Centermentioning
confidence: 99%
“…Since MCMC approaches imply a number of additional challenges for applied researchers (in particular monitoring mixing and convergence of Markov chains), we will also provide step by step guidance on those aspects of the analysis. Model fitting is carried out using the R (R Core Team, 2017) package bamlss (Umlauf et al, 2017). The R code to reproduce all examples is provided in the online materials of this paper.…”
Section: Introductionmentioning
confidence: 99%
“…For the posterior mean sampling, we construct approximate full conditionals π (β km |·) based on a second-order Taylor expansion of the log-posterior centered at the last state β [l] km , similar to Fahrmeir et al (2004), Klein, Kneib, Klasen, and Lang (2015), and Klein, Kneib, Lang, and Sohn (2015) and as shown in more detail in Umlauf et al (2017). The proposal density from this approximate full conditional is proportional to a multivariate normal distribution with the precision matrix ( [l] km ) −1 = −H (β [l] km ) and the mean μ [l] …”
Section: Bayesian Estimationmentioning
confidence: 99%
“…The presented model is implemented in the R-package bamlss (Umlauf, Klein, & Zeileis, 2017;Umlauf, Klein, Zeileis, & Koehler, 2016). The general model structure and potential extensions are outlined in Section 2.…”
Section: Introductionmentioning
confidence: 99%