The research on predictive maintenance of rotating machines, the most important element in manufacturing facilities, has been very active. The widespread availability of smart factory solutions has led to improved data collection from machines and processes and is able to provide key information. For our purpose, the collected information enables the maintenance system to predict the remaining useful life using deep learning models. The introduction of multi-layer perceptron of signal processing originating from bearings, in time series data, has been discussed in many publications. However, estimating accuracy for the remaining useful life is determined by the selection of the feature domain and the concatenation network model. Herein, we introduce a convolutional Autoencoder based on multi-domain ensemble learning in order to include various feature domains and a concatenation network operated by latent space into a single neural network. The performance of the proposed model is evaluated by using a simple health indicator and a PRONOSTIA dataset and compared with a simple concatenation model, 2-stage Autoencoder, and a recurrent neural network.