2016
DOI: 10.3758/s13423-016-1161-z
|View full text |Cite
|
Sign up to set email alerts
|

Beliefs and Bayesian reasoning

Abstract: We examine whether judgments of posterior probabilities in Bayesian reasoning problems are affected by reasoners' beliefs about corresponding real-world probabilities. In an internet-based task, participants were asked to determine the probability that a hypothesis is true (posterior probability, e.g., a person has a disease, given a positive medical test) based on relevant probabilities (e.g., that any person has the disease and the true and false positive rates of the test). We varied whether the correct pos… Show more

Help me understand this report

Search citation statements

Order By: Relevance

Paper Sections

Select...
2
1
1
1

Citation Types

5
14
0
5

Year Published

2018
2018
2024
2024

Publication Types

Select...
6
1

Relationship

1
6

Authors

Journals

citations
Cited by 17 publications
(26 citation statements)
references
References 23 publications
5
14
0
5
Order By: Relevance
“…Figure 12C, r = 0.78, p < .001), but this correlation is much lower in the unbelievable condition ( Figure 12D, r = 0.14, p = .06, comparative test: z = 2.64, p = .004). Our model therefore reproduces the belief bias effect reported by Cohen et al (2017).…”
Section: Belief Biassupporting
confidence: 84%
“…Figure 12C, r = 0.78, p < .001), but this correlation is much lower in the unbelievable condition ( Figure 12D, r = 0.14, p = .06, comparative test: z = 2.64, p = .004). Our model therefore reproduces the belief bias effect reported by Cohen et al (2017).…”
Section: Belief Biassupporting
confidence: 84%
“…We developed a set of 26 Bayesian reasoning problems that reported the probabilities that people or objects had certain characteristics. The content of the problems was designed to be relatively arbitrary to encourage participants to rely on the reported probabilities instead of their background knowledge (Cohen et al, ). The stimuli followed the same format as the rollercoaster example from Section .…”
Section: Methodsmentioning
confidence: 99%
“…Participants were asked to base their answers only on the information given and not general knowledge, and they were warned that the probabilities provided in the problems may not be realistic. As this example shows, we tried to choose scenarios in which people would not have strong intuitions about what the probabilities should be (Cohen, Sidlowski, & Staub, ).…”
Section: Introductionmentioning
confidence: 99%
“…Sin embargo, una ventaja de este modelo es la posibilidad de con-trastar más de una hipótesis. 10,12,16,17 Una vez establecidas las hipótesis, asegurándose de ser mutuamente excluyentes y exhaustivas para las explicaciones plausibles, se determina su probabilidad bayesiana a priori (nivel de credibilidad). Esta probabilidad puede ser expresada como una razón (momios preresultados o momios a priori):…”
Section: Contrastación Por El Método Bayesianounclassified
“…2,12,16,20 Otra ventaja de esta perspectiva es que la credibilidad fi nal hacia una hipótesis depende también de nuestros conocimientos o expectativas antes de realizar un estudio, por ello, la necesidad de especifi cación previa. 17,21 Es lógico pensar que si la evidencia a priori ha sido muy sólida en su teoría o secundaria a observaciones empíricas, los nuevos datos aportarán poco a la credibilidad fi nal, pero si estas han sido muy pocas o mínimamente fundadas, aún con un FB tan grande (fuerza de la evidencia) como para aumentar o disminuir sustancialmente la credibilidad, es posible que no sea sufi ciente para cambiar la decisión en contra de la hipótesis que inicialmente se consideró. En esta postura es fundamental calcular la probabilidad posestudio o a posteriori como la credibilidad actualizada, es decir, la credibilidad que se obtiene tras la conjunción del nivel a priori más la evidencia obtenida del estudio.…”
Section: Contrastación Por El Método Bayesianounclassified