This report is part of the DataflowOpt project on optimization of modern dataflows and aims to introduce a data quality-aware cost model that covers the following aspects in combination: (1) heterogeneity in compute nodes, (2) geo-distribution, (3) massive parallelism, (4) complex DAGs and (5) streaming applications. Such a cost model can be then leveraged to devise cost-based optimization solutions that deal with task placement and operator configuration.