In this study, TiO2 nanoparticle (TiO2NP)-coated film was produced to protect manuscripts against microorganisms using ecofriendly benign materials. As a result, a simple method was created that uses poultice biofilm made of carboxymethyl cellulose (CMC) and Phytagel plant cell (PGP) loaded with TiO2NPs to preserve manuscripts against microbes in an environmentally responsible way. Three volumes (1, 2, 4 mL) of TiO2NPs were put into a biofilm combination to produce the poultices known as CMC/PGP/TiO2-1, CMC/PGP/TiO2-2, and CMC/PGP/TiO2-3. The synthesized TiO2NPs were nearly spherical in shape, small in size (98 nm), and stable (zeta potential value − 33 mV). The results showed that the unique deposition of TiO2NPs on the biofilm surface gave the produced films loaded with TiO2NPs a rough structure. The highest values of mechanical characteristics were determined to be in CMC/PGP/TiO2-1 with values of 25.4 g, 6.6 MPa, and 11.4%, for tensile strength, elongation at break, and tear strength, respectively. Based on molecular identification, the fungus Aspergillus sydowii and the bacterium Nevskia terrae, with accession numbers MG991624 and AB806800, respectively, were isolated and identified from an antiquated manuscript formed from cellulosic fibers. Before the experiments, the produced cotton paper samples were aged, and then, one group was infected for 6 months by A. sydowii and the second group with N. terrae. Following the preparation of a CMC/PGP biofilm loaded with various volumes of TiO2NPs, poultices were applied to infected cotton paper in order to clean it. The infected cotton paper was placed inside the sandwich-like poultices that were created. The poultice CMC/PGP/TiO2-2 demonstrated potential for preventing the growth of A. sydowii and N. terrae-infected cotton paper, when the fibers were saved, cleaned, and coated with CMC/PGP/TiO2-2 after absorbing the fungus and the bacterium and exhibiting exceptional antimicrobial activities. Finally, the novel biofilms have demonstrated their capacity to lessen microbial contamination of cotton paper. In order to generalize the usage of these poultices, it is also advised that they be produced on a large scale and tested on a variety of organic materials in the future.
Graphical Abstract