The Exaltation of Newcastle disease virus (END) phenomenon is induced by the
inhibition of type I interferon in pestivirus-infected cells in vitro,
via proteasomal degradation of cellular interferon regulatory factor (IRF)-3 with the
property of the viral autoprotease protein Npro. Reportedly, the amino acid
residues in the zinc-binding TRASH motif of Npro determine the difference in
characteristics between END-phenomenon-positive (END+) and
END-phenomenon-negative (END−) classical swine fever viruses (CSFVs). However,
the basic mechanism underlying this function in bovine viral diarrhea virus (BVDV) has not
been elucidated from the genomic differences between END+ and END−
viruses using reverse genetics till date. In the present study, comparison of complete
genome sequences of a pair of END+ and END− viruses isolated from
the same virus stock revealed that there were only four amino acid substitutions (D136G,
I2623V, D3148G and D3502Y) between two viruses. Based on these differences, viruses with
and without mutations at these positions were generated using reverse genetics. The END
assay, measurements of induced type I interferon and IRF-3 detection in cells infected
with these viruses revealed that the aspartic acid at position 136 in the zinc-binding
TRASH motif of Npro was required to inhibit the production of type I interferon
via the degradation of cellular IRF-3, consistently with CSFV.