The field of nanotechnology has witnessed a paradigm shift in recent years, with an increasing emphasis on eco-friendly and sustainable synthesis methods for metallic nanoparticles. Algal-mediated synthesis, an emerging and promising technique, harnesses the bioactive compounds present in algae for the green synthesis of metallic nanoparticles. This process not only offers a sustainable alternative to conventional chemical methods but also holds the potential to revolutionize various industries, including medicine, energy, and environmental remediation. Microalgae, forming a substantial part of the planet’s biodiversity, are usually single-celled colony-forming or filamentous photosynthetic microorganisms, including several legal divisions like Chlorophyta, Charophyta, and Bacillariophyta. Whole cells of Plectonema boryanum (filamentous cyanobacteria) proved efficient in promoting the production of Au, Ag, and Pt nanoparticles. The cyanobacterial strains of Anabaena flos-aquae and Calothrix pulvinate were used to implement the biosynthesis of Au, Ag, and Pt nanoparticles. This abstract provides an overview of the key aspects of algal-mediated metallic nanoparticle synthesis. Algae, as a versatile source of bioactive compounds, serve as both reducing and stabilizing agents in the nanoparticle formation process. Various types of algae, including microalgae and macroalgae, have been explored for this purpose, each with distinct biochemical profiles that contribute to the synthesis process.