Search citation statements
Paper Sections
Citation Types
Year Published
Publication Types
Relationship
Authors
Journals
The superconducting tunneling effect in heterostructures, describing the process where single electrons or Cooper pairs tunnel through the barrier, can always play a significant role in understanding the phase coherence and pairing mechanisms in superconductors. Taking advantage of the easy cleavage to atomically-thin monolayer structure of layered superconductors and resulting quantum confinement of electrons or Cooper pairs at two-dimensional limit, van der Waals superconducting materials hosting superconducting order in monolayers or heterostructures can exhibit extensive emergent phenomena associated with quantum phase transitions of vortex and anti-vortex pairs. Examples of superconducting tunnel junctions (STJs) based on layered superconductors have been demonstrated to achieve novel phenomena, including Andreev bound states, Majorana bound states and 0/π-phase junctions. Since the characteristic parameters of quasiparticle tunneling through the barrier are directly associated with the energy gap values of superconductors, such critical parameter can be obtained within the STJ device geometry, which helps us understand and control the pairing states and emerging phenomena in superconductors. In this review, from the perspective of STJs with single electron tunneling and Cooper pair tunneling, we discuss Andreev reflection, Majorana bound states, photon-induced tunneling effects, non-reciprocal transport and superconducting diode phenomena, as well as prospects for layered-superconductor-based STJs.
The superconducting tunneling effect in heterostructures, describing the process where single electrons or Cooper pairs tunnel through the barrier, can always play a significant role in understanding the phase coherence and pairing mechanisms in superconductors. Taking advantage of the easy cleavage to atomically-thin monolayer structure of layered superconductors and resulting quantum confinement of electrons or Cooper pairs at two-dimensional limit, van der Waals superconducting materials hosting superconducting order in monolayers or heterostructures can exhibit extensive emergent phenomena associated with quantum phase transitions of vortex and anti-vortex pairs. Examples of superconducting tunnel junctions (STJs) based on layered superconductors have been demonstrated to achieve novel phenomena, including Andreev bound states, Majorana bound states and 0/π-phase junctions. Since the characteristic parameters of quasiparticle tunneling through the barrier are directly associated with the energy gap values of superconductors, such critical parameter can be obtained within the STJ device geometry, which helps us understand and control the pairing states and emerging phenomena in superconductors. In this review, from the perspective of STJs with single electron tunneling and Cooper pair tunneling, we discuss Andreev reflection, Majorana bound states, photon-induced tunneling effects, non-reciprocal transport and superconducting diode phenomena, as well as prospects for layered-superconductor-based STJs.
We propose a passive single-photon detector based on the bipolar thermoelectric effect occurring in tunnel junctions between two different superconductors thanks to spontaneous electron–hole symmetry breaking. Our superconducting thermoelectric detector (STED) converts a finite temperature difference caused by the absorption of a single photon into an open circuit thermovoltage. Designed with feasible parameters, our STED is able to reveal single photons of frequency ranging from ∼15 GHz to ∼150 PHz depending on the chosen design and materials. In particular, this detector is expected to show values of the signal-to-noise ratio SNR ∼ 15 at ν = 50 GHz when operated at a temperature of 10 mK. Interestingly, this device can be viewed as a digital single-photon detector, since it generates an almost constant voltage VS for the full operation energies. Our STED can reveal single photons in a frequency range wider than four decades with the possibility to discern the energy of the incident photon by measuring the time persistence of the generated thermovoltage. Its broadband operation suggests that our STED could find practical applications in several fields of quantum science and technology, such as quantum computing, telecommunications, optoelectronics, THz spectroscopy, and astro-particle physics.
We theoretically study the quasiparticle current behavior of a thermally biased bipolar thermoelectrical superconducting quantum interference proximity transistor, formed by a normal metal wire embedded in a superconducting ring and tunnel-coupled to a superconducting probe. In this configuration, the superconducting gap of the wire can be modified through an applied magnetic flux. We analyze the thermoelectric response as a function of magnetic flux, at fixed temperatures, in the case of a device made of the same superconductor. We demonstrate magnetically controllable, bipolar thermoelectric behavior and discuss optimal working conditions by looking at the thermoelectric power and other figures of merit of the device.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.