This review presents recent advances and applications of statistical associating fluid theory (SAFT), which has been extended in the past few years, conceptually and practically, to improve its performance and to represent thermodynamic properties of complex systems, such as associating polymers, polydispersed polymers, aqueous electrolytes, dipolar and quadrupolar systems, ionic liquids, near-critical systems, interfacial phenomena, crystallizable copolymers, gas hydrates, liquid crystals, biomaterials, and oil reservoir fluids, as well as dynamic properties such as viscosity.