Wind erosion is a major contributor to desertification in the Sahel. Although three effective countermeasures for wind erosion (i.e. ridging, mulching with post-harvest crop residue, and windbreaks) have been proposed, they are not practical for Sahelian farmers. Therefore, we designed a new land management practice, termed the ''Fallow Band System,'' which can be used for both controlling wind erosion and improving soil fertility and crop production. This method does not impose additional expense and labor requirements on Sahelian farmers who are economically challenged and have limited manpower. The objective of this study was to evaluate the effects of this system on wind-erosion control and soil-fertility improvement. We conducted field experiments at the International Crops Research Institute for the Semi-Arid Tropics West and Central Africa and showed that (i) a fallow band can capture 74% of wind-blown soil particles and 58% of wind-blown coarse organic matter, which suggests that it can effectively control wind erosion, (ii) the amount of soil nutrients available for crops in a former fallow band was increased by the decomposition of trapped soil materials containing considerable amounts of nutrients, and (iii) the amount of soil water available for crops in a former fallow band was increased by the trapped wind-blown soil materials through improvement of rainwater infiltration into surface soil. These results lead to the conclusion that the ''Fallow Band System'' can be useful for preventing desertification and improving soil fertility in the Sahel, West Africa.