Variation in climate, disturbance regime, and forest management strongly influence terrestrial carbon sources and sinks. Spatially distributed, process-based, carbon cycle simulation models provide a means to integrate information on these various influences to estimate carbon pools and flux over large domains. Here we apply the Biome-BGC model over the four-state Northwest US region for the interval from 1986 to 2010. Landsat data were used to characterize disturbances, and forest inventory data were used to parameterize the model. The overall disturbance rate on forest land across the region was 0.8 % year -1 , with 49 % as harvests, 28 % as fire, and 23 % as pest/pathogen. Net ecosystem production (NEP) for the 2006-2010 interval on forestland was predominantly positive (a carbon sink) throughout the region, with maximum values in the Coast Range, intermediate values in the Cascade Mountains, and relatively low values in the Inland Rocky Mountain ecoregions. Localized negative NEPs were mostly associated with recent disturbances. There was large interannual variation in regional NEP, with notably low values across the region in 2003, which was also the warmest year in the interval. The recent (2006)(2007)(2008)(2009)(2010) net ecosystem carbon balance (NECB) was positive for the region (14.4 TgC year -1 ). Despite a lower area-weighted mean NECB, public forestland contributed a larger proportion to the total NECB because of its larger area. Aggregated forest inventory data and inversion modeling are beginning to provide opportunities for evaluating model-simulated regional carbon stocks and fluxes.